хочу сюди!
 

Alisa

39 років, водолій, познайомиться з хлопцем у віці 34-46 років

Замітки з міткою «енергія»

Штучний фотосинтез вуглеводнів

Лист дерева, трави чи водоростей: все це в природних умовах здатне виробляти біомасу, або ж паливо, з простого поєднання води, сонячного світла і вуглекислого газу через диво фотосинтезу. І от вчені говорять, що шляхом комбінування фізики, хімії та біології вони відтворили і покращили цей процес.

          Дослідники розробили "штучний лист", який дозволяє накопичувати сонячну енергію у вигляді рідкого палива. Ця нова технологія одного чудового дня може забезпечити заправку вашого транспортного засобу і... вбити нафтодобувну і нафтопереробну галузі.



          Деніел Носера (Daniel Nocera) з Гарвардського університету і Памела Силвер з Гарвардської медичної школи у співпраці розробили нову геліосистему, яка може:
- розчеплювати молекули води з виділенням водню;
- відділяти бактерій, що харчуються воднем, від води
з метою вироблення рідкого палива.

          У роботі, оприлюдненій в журналі Science 3 червня 2016 р., колектив науковців продемонстрував не тільки процес вироблення новою системою придатного для використання палива, але і вражаючу ефективність цієї системи.
           - В принципі, ми маємо платформу, яка може синтезувати будь-яку молекулу на базі вуглецю із ряду нафтових вуглеводнів, - сказала П. Силвер. Вона додала, що платформа може бути дуже універсальною.



             Поточна модель розроблена на основі раніших досліджень цієї ж групи Носери-Силвер. Їхня перша модель так званого біонічного листу 2015 року створення стикнулася з низкою проблем, зокрема виділення активного кисню, що знищував ДНК воднеїдних бактерій. Також перша модель мала каталізатор виділення водню з нікель-молібден-цинкового сплаву. Вона потребувала для роботи надто високу напругу, що знижувало її ефективність. Незважаючи на труднощі, попередня модель біонічного листу була придатна з використанням сонячної енергії виробляти 216 міліграм ізопропілового спирту на літр води.
           Нова версія, Біонічний лист 2.0, містить вже каталізатор з кобальт-фосфорного сплаву і не виділяє активного кисню. Можливість працювати на низькій напрузі дозволяє значно підвищити рівень ефективності системи.
           Біонічний лист 2.0 може накопичувати сонячну енергію в біомасу з коефіцієнтом корисної дії (ККД) 10 %. Іншими словами, на кожну кіловат*годину спожитої сонячної енергії мікроби забирають 130 г CO2 із 230000 літрів повітря, утворюючи 60 г ізопропанола. Це значення на порядок вище того, що спостерігається у природі для найбільш швидко зростаючих видів рослин (ККД 1 %).
             Нова модель також може синтезувати ізопентанол, ізобутанол і щось таке як прообраз пластика, названого біо-пластик PHB. Самовідновлююча здатність каталізатора запобігає його витоку в готовий розчин.
            - Це важливе відкриття доводить, що ми можемо здійснити процес синтезу вуглеводнів краще, ніж за природного фотосинтезу. Та я також хотів би розвинути цю технологію до рівня, придатного для широкого впровадження в країнах, що розвиваються, - сказав Деніел Nocera.



             Разом з тим Носера визнає, що біонічний лист найближчим часом не буде конкурувати за ціною з викопним паливом, особливо тому, що мікроби ще не виробляють паливо так швидко, як хотілося б. Найбільша продуктивність існуючої моделі на сьогодні розраховується на літри штучного палива в день, хоча команда не виявила обмежень до того, щоб виготовляти продуктивніші установки.
             Ця нова технологія стала сторінкою у книзі рукотворних чудес матері-природи і дозволила використати фотосинтез для перетворення сонячної енергії в паливо. Останні дослідження  профінансовані в рамках програми Гарвардського університету "Перші 100 Ватт", підтримані управліннями наукових досліджень військово-морських сил та військово-повітряних сил, Інститутом біоінженерії Вісса та іншими.

П. Л. Капиця про енергетику відновлюваних ресурсів.

           Далі в цьому товаристві наводяться витяги з Доповіді, що була проголошена в далекому 1975 році і мала повну назву

ЭНЕРГИЯ И ФИЗИКА
Доклад на научной сессии, посвященной 250-летию Академии наук СССР

           Автором доповіді був видатний радянський вчений-фізик Пьотр Лєонідовіч Капіца. Або ж, якщо перекласти це російське прізвище простою руською мовою, то не менш видатний українець Петро Копиця. Відомо, що його син С. П. Капиця іноді виправляв співбесідників, що звали його так: Ну, какой я КАпица - я КопЬІця! Але в письмових джерелах закріпилося спотворене "великим і могутнім" написання прізвища вченого - Капица.
           Доповідь П. Капиці містила низку положень, які стосуються перспектив використання і розвитку відновлюваних джерел енергії. Цікаво час від часу кидати короткий погляд в ретроспективу. Це не тільки дає уяву про спосіб мислення та розуміння відомих проблем тим поколінням. Це також дозволяє розділити "невтілене - обмежене сьогоднішніми поки що куцими можливостями", "невтілене - обмежене тогочасним баченням та рівнем знання" і геніальні (майже надприродні lol ) наукові пророцтва. І сприяє в деякій мірі розумінню стану сьогоднішніх проблем у взаєминах людства з великими і таємничими силами природи, раціональних напрямів його руху у подоланні енергетичного "голоду" і таке інше.
           Сама доповідь у повному обсязі не менш цікава, але її загальна тема і обсяг змушують помістити її окремо. Отож, далі фрагменти доповіді...  

1. Сейчас в качестве основных энергетических ресурсов используются торф, уголь, нефть, природный газ. Установлено, что запасенная в них химическая энергия была накоплена в продолжение тысячелетий благодаря биологическим процессам. Статистические данные по использованию этих ресурсов показывают, что в ближайшие столетия они будут исчерпаны. Поэтому, на основе закона сохранения энергии, люди, если они не найдут других источников энергии, будут поставлены перед необходимостью ограничения ее потребления, и это приведет к снижению уровня материального благосостояния человечества.

І дотепер людство бере більшу частку енергії з викопних ресурсів. Але найдошкульнішою проблемою замість перспективи їх повного вичерпання тепер постало розуміння того, що зовсім не земні надра є "найтоншою ланкою". Трохи кумедно, але якраз самому людству світить просто не дожити, навіть і близько, до вичерпання викопних енергетичних ресурсів. Незворотні зміни клімату, викликані нагріванням планети від спалювання викопного палива, а також парниковим ефектом, спричиненим зміною складу атмосфери за рахунок продуктів згоряння згаданих ресурсів (в основному СО2), як стверджують кліматологи, можуть призвести до розладу екосистеми (підтоплення, стихійні лиха, жорсткий ультрафіолет) та вимирання великої частини живого на планеті, включно із самим людством. Принаймні саме висновки кліматологів є зараз головним рушієм розвитку альтернативних видів енергетики, оформленим політично у вигляді численних кліматичних домовленостей і протоколів. Тож тепер задача людства полягає в тому, щоб частку енергетики, що базується на вугіллі, нафті і газі, не збільшувати. А зростання потреб у енергії забезпечувати виключно видами енергетики, що не спалюють викопних палив і не додають в атмосферу СО2.

2. Неизбежность глобального энергетического кризиса сейчас полностью осознана, и поэтому энергетическая проблема для техники и науки стала проблемой № 1. Сейчас в ведущих странах отпускаются большие средства на научно-технические исследования в этой области.

На жаль, усвідомлення цієї проблеми обмежувалося залом, де виступав пан Капиця, та його аудиторією. Поза тим залом, навпаки, чергові з'їзди мудрої партії намічали щораз більші задачі безглуздого росту видобування вугілля, нафти, газу. Комуністичне майбутнє чомусь ніяк не уявлялося без виплавки нових мільйонів тон металу. Цей метал (чи то зібраний піонерами брухт, чи то вивезений і покинутий на величезних просторах у місцях планованого будівництва всіляких об'єктів) іржавів потім роками під відкритим небом.  Бездумно закопувався у шахтах. Закладався у "найпередовіші" радянські технічні мастодонти із запрограмованим рівнем металомісткості. Особливо гостре "розуміння" неминучої кризи енергетичних ресурсів також спостерігалося серед простих представників радянського народу. Це і водії, котрі зливали невикористане пальне у тріщини в землі, щоб не допустити скорочення норм і лімітів централізованого виділення того пального на майбутні періоди. Комунальники, що з тих же мотивів цілодобово палили вуличне світло... Або шахтарі, котрі іноді, щоб, не дай боже, на свою голову не показати плановій економіці пласти та жили унікально чистого вугілля, що зрідка траплялися, транспортували породу з поверхні у шахту, і "розбавляли" те вугілля до статистично середньої чистоти.

3. Энергия, которой пользуются люди, делится теперь на две части. Первая - это так называемая бытовая энергия. Она непосредственно обеспечивает культурный образ жизни. Эта энергия используется для освещения, для питания холодильников, телевизоров, электробритв, пылесосов и большого количества других приборов, которыми пользуются в повседневной жизни. Используемая в быту мощность исчисляется обычно киловаттами.

4. Другой вид энергии - это промышленная энергия, энергия больших мощностей. Ее используют в металлургии, на транспорте, в машиностроении, в механизации строительства и сельского хозяйства. Эта энергия значительно больше бытовой, мощность ее исчисляется в мегаваттах, ее масштабы и стоимость определяют уровень валового продукта в народном хозяйстве страны. Конечно, предстоящий кризис будет вызван недостатком ресурсов энергии только в энергетике больших мощностей; обеспечение получения этой энергии в достаточном количестве и является основной проблемой, которая, ставится перед наукой.

Знову ж таки, про нестачу ресурсів поки не йдеться. Чіткого акценту на розмежування цільового призначення об'єктів зеленої енергетики для промисловості чи побуту не робиться. Енергогенеруючі потужності на базі відновлюваних ресурсів, що вводяться в експлуатацію в наш час, діляться на великі СЕС і ВЕС, що інтегруються у національну електромережу своїх країн, невеликі місцеві, що забезпечують окремі об'єкти інфраструктури чи промисловості, та індивідуальні, що працюють на окремі домогосподарства. Два останні типи можуть бути автономними або з можливістю віддавати надлишки у загальну мережу.

5. Сейчас главный интерес привлекают те методы генерирования энергии, которые не зависят от количества энергии, запасенной в прошлом в топливе различного вида. Здесь главным из них считается прямое превращение солнечной энергии в электрическую и механическую, конечно, в больших масштабах. Опять же осуществление на практике этого процесса для энергетики больших мощностей связано с ограниченной величиной плотности потока энергии. Оптимальный расчет сейчас показывает, что снимаемая с одного квадратного метра освещенной Солнцем поверхности мощность в среднем не будет превышать 100 Вт. Поэтому, чтобы генерировать 100 МВт, нужно снимать электроэнергию с площади в один квадратный километр. Ни один из предложенных до сих пор методов преобразования солнечной энергии не может этого осуществить так, чтобы капитальные затраты могли оправдаться полученной энергией. Чтобы это было рентабельно, надо понизить затраты на несколько порядков, и пока даже не видно пути, как это можно осуществить. Поэтому следует считать, что практическое прямое использование солнечной энергии в больших масштабах нереально.

Велика геліоенергетика - реальність! Справді, у 1976 р. ціна 1 кВт х год енергії фотоелектричних панелей складала 50...70 $ США. У 2000 році цей показник знизився у 10 разів. А у 2016 році сягнув рівня від 2-3 центів в країнах з високим рівнем інсоляції до 6-7 центів у помірному кліматі. Технологія виготовлення кремнієвих фотоелементів зазнала вже не одну хвилю вдосконалень. Затрати знижено. Масовий випуск кремнієвих модулів з прийнятною ціною тепер не становить труднощів. ККД найпередовіших зразків кремнієвих модулів становить на сьогодні вже 26 %. Типовий їх ККД 15...20 %. Це означає, що в умовах інсоляції 1 кВт х год / кв.м. за світловий день (що характерно, припустимо, для Півдня України взимку) є можливість щодня отримувати з квадратного метра панелі 0,15 - 0,2 кВт х год електоенергії. Які типи панелей на сьогодні справді лишаються надзвичайно дорогі (але й дуже перспективні) це багатоперехідні (багатошарові плівкові) сонячні модулі, для яких в лабораторних умовах вже досягнуто ККД 43 % при тому, що розрахункова межа їх ефективності складає 80 %. I поки що не видно реальних шляхів здешевлення цих передових типів панелей, бо для їх виробництва потрібні такі елементи, як кадмій, телур, індій, галій, яких, на відміну від кремнію, мало в земній корі.

6. Но по-прежнему это остается возможным через ее превращение в химическую энергию, как это испокон веков делается при содействии растительного мира.

Тепер це робиться свідомо у великих масштабах. Вирощення енергетичних рослин одна з перспективних галузей зеленої енергетики в деяких країнах Європи.

7. Конечно, не исключено, что со временем будет найден фотохимический  процесс, который откроет возможность более эффективно и проще превращать солнечную энергию в химическую, чем это происходит сейчас в природе. Такой процесс химического накопления будет иметь еще то большое преимущество, что даст возможность использования солнечной энергии вне зависимости от изменения ее интенсивности в продолжение дня или от времен года.

Браво, пане Капице! Людство погодилося з Вами, що йому цікаво буде мати у своєму арсеналі такий процес.

8. Сейчас также идет обсуждение вопроса использования геотермальной энергии. Преимущество этого метода для энергетики больших мощностей, несомненно, очень велико, энергетические запасы здесь неистощимы, и, в отличие от солнечной энергии, которая имеет колебания не только суточные, но и в зависимости от времен года и от погоды, геотермальная энергия может генерироваться непрерывно. Современный подход к этой проблеме основывается на том, что в любом месте земной коры на глубине в 10-15 км достигается температура в несколько сот градусов, достаточная для получения пара и генерирования энергии с хорошим к. п. д. При осуществлении этого проекта на практике мы опять наталкиваемся на ограничения, связанные с плотностью потока энергии. Как известно, теплопроводность горных пород очень мала. Поэтому при существующих внутри Земли градиентах температур для подвода необходимого тепла нужны очень большие площади, что весьма трудно выполнимо на глубине в 10-15 км. Вот почему возможность нагрева необходимого количества воды сомнительна.
Сейчас тут выдвигается ряд интересных предложений. Например, на этой глубине взрывать атомные бомбы и этим создавать либо большую каверну, либо большое количество глубоко проникающих трещин shock lol . Осуществление такого проекта будет стоить очень дорого; но, ввиду важности проблемы и больших преимуществ геотермального метода, я думаю, что, несмотря на эти расходы, следует, по-видимому, рискнуть осуществить этот проект.


Може здатися трохи кумедним почути про такий підхід від людини, яка трохи згодом говорить про велику небезпеку радіації для всього живого. Але не слід забувати, що у ті часи як підземні, так і наземні ядерні вибухи були справою досить буденною. Хоча і не в масових ЗМІ, але у вузьких колах результати таких випробувань, як воєнного, так і невоєнного значення, широко обговорювалися багатьма зацікавленими спеціалістами, ну а фізиками-ядерниками і поготів. Тож навряд чи слід дивуватися або засуджувати науковця, творця і людину свого часу за припущення про можливість застосування такого інструмента, як мирна атомна бомба. Але й добре, що це "задоволення" дороге lol

9. Кроме солнечной и геотермальной энергий, не истощающих запасы, есть еще гидроэнергия, получаемая при запруживании рек и при использовании морских приливов. Накопленную таким образом гравитационную энергию воды можно весьма эффективно превращать в механическую. Сейчас в энергетическом балансе использование гидроэнергии составляет не более 5 %, и, к сожалению, дальнейшего увеличения не приходится ждать. Это связано с тем, что запруживание рек оказывается рентабельным только в горных местах, когда на единицу площади водохранилища имеется большая потенциальная энергия. Запруживание рек с подъемом воды на небольшую высоту обычно экономически не оправдывает себя, в особенности когда это связано с затоплением плодородной земли, так как приносимый ею урожай оказывается значительно более ценным, чем получаемая энергия.

А от і ні. Цей вид енергії теж належить до екологічно чистих вічно поновлюваних способів. Ріст частки гідроенергетики у світовій енергетиці за минулі 40 років є. Вона складає в наш час близько 20 %.

10. Использование ветра также оказывается экономически неоправданным из-за недостаточной плотности энергетического потока. Конечно, использование солнечной энергии, малых водяных потоков, ветряков часто может быть полезным для бытовых нужд в небольших масштабах.

Що тут сказати... Згідно з прогнозом цього року встановлені потужності тільки геліоенергетики в усьому світі збільшаться на 70 ГВт і складуть 295 ГВт. Встановлені потужності вітроенергетики ще у 2015 р. складали в усьому світі 435 ГВт. Нагадаю, що таке 1 ГВт. Один гігават == велика сучасна вугільна електростанція або АЕС. Залізниця Нідерландів працює зараз винятково на вітровій електриці. Здається, побутовий масштаб зелена енергетика все-таки переросла. Навпаки, вона ніяк не може дійти до побуту пересічних громадян переважно через їх незаможність.

11. Из приведенного анализа следует, что нужно искать новые источники энергии для энергетики больших мощностей взамен истощающихся в природе запасов химической энергии. Очевидно, можно и следует более бережно относиться к использованию энергетических ресурсов. Конечно, желательно, например, не тратить их на военные нужды. Однако все это только отсрочит истощение топливных ресурсов, но не предотвратит кризиса.

Наскільки глибока зацикленість саме на вичерпанні енергоресурсів... І блаженне невідання екологічних наслідків...

12. Как это уже становится общепризнанным, вся надежда на решение глобального энергетического кризиса - в использовании ядерной энергии. Физика дает полное основание считать, что эта надежда обоснованна.
13. Как известно, ядерная физика дает два направления для решения энергетической проблемы. Первое уже хорошо разработано и основывается на получении цепной реакции в уране, происходящей при распаде его ядер с выделением нейтронов. Это тот же процесс, которой происходит в атомной бомбе, но замедленный до стационарного состояния. Подсчеты показали, что при правильном использовании урана его запасы достаточны, чтобы не бояться их истощения в ближайшие тысячелетия. Электростанции на уране уже сейчас функционируют и дают рентабельную электроэнергию.


Правда. І теж не абсолютна. В той час як деякі країни (серед яких і Україна) у довготривалій перспективі роблять ставку саме на атомну енергію, інші країни (як от Німеччина в особі кацлера А. Меркель) анонсують дату, коли закриється їхня остання АЕС.

14. Но также хорошо известно, что на пути их дальнейшего широкого развития и перевода всей энергетики страны на атомную энергию лежит необходимость преодоления трех основных трудностей:
а. Шлаки от распада урана являются сильно радиоактивными, и их надежное захоронение представляет большие технические трудности, которые еще не имеют общепризнанного решения. Самое лучшее было бы отправлять их на ракетах в космическое пространство, но пока что это считается недостаточно надежным.
б. Крупная атомная станция на миллионы киловатт представляет большую опасность для окружающей природы и в особенности для человека. В случае аварии или саботажа вырвавшаяся наружу радиоактивность может на площади многих квадратных километров погубить все живое, как атомная бомба в Хиросиме. Опасность сейчас расценивается настолько большой, что в капиталистическом мире ни одна страховая компания не берет на себя риск таких масштабов.
в. Широкое использование атомной электроэнергии приведет также к широкому распространению плутония, являющегося необходимым участником ядерной реакции. Такое распространение плутония по всем странам земного шара сделает более трудным контроль над распространением атомного оружия. Это может привести к тому, что атомная бомба станет орудием шантажа, доступным даже для предприимчивой группы гангстеров.

В утилізації ядерних відходів жодних зрушень немає. Їх так само залишають на десятки років у великих закритих "каструлях", розміщених у різних "відхожих місцях" і відомих як сухі сховища відходів ядерного палива. Небезпека АЕС вже зовсім скоро вивчатиметься людством на практиці: Три Майл Айленд, Чорнобиль, Фукусіма... Ну, а враховуючи ленінградські зв'язки з кримінальним світом нинішнього президента однієї сусідньої ядерної держави, згадана Капицею третя небезпека виглядає майже як пророцтво...

15.  ...две последние трудности можно было бы преодолеть, располагая атомные электростанции на небольших необитаемых островах в океане, далеко от густонаселенных мест. Эти станции находились бы под тщательным контролем, и в случае аварии ее последствия не представляли бы большой опасности для людей. Энергией, вырабатываемой электростанцией, можно было бы, например, разлагать воду и полученный водород в жидком виде транспортировать и использовать как топливо, которое при сгорании не загрязняет атмосферу.

О, так, водень! У розробці технологій і розбудові інфраструктури для водневої енергетики саме зараз повним ходом працюють у світі. І японці цим шляхом пройшли, здається, далі ніж інші. Але все ж як не було, так і немає задовільного способу транспортування і тривалого зберігання великих кількостей водню. Тому то і атомні станції збудовано під боком великих міст і столиць. А безпека може досягатися лише високою культурою виробництва і обслуговування станцій. Ось чому околиці штатно працюючих АЕС, як правило, є зараз екологічно чистими місцями природи. Набагато чистішими, ніж околиці димлячих ТЕС і ТЕЦ.

16. Следует признать, однако, что лучшим выходом из создавшегося положения нужно считать получение энергии путем термоядерного синтеза ядер гелия из ядер дейтерия и трития, Известно, что этот процесс осуществляется в водородной бомбе, но для мирного использования он должен быть замедлен до стационарного состояния. Когда это будет сделано, то все указанные трудности, которые возникают при использовании урана, будут отсутствовать, потому что термоядерный процесс не дает в ощутимых количествах радиоактивных шлаков, не представляет большой опасности при аварии и не может быть использован для бомбы как взрывчатое вещество. И наконец, запас дейтерия в природе, в океанах, еще больше, чем запас урана. Но трудности осуществления управляемой термоядерной реакции пока еще не преодолены.
17. Пока нет оснований считать, что трудности нагрева ионов в плазме не удастся преодолеть, и мне думается, что термоядерная проблема получения больших мощностей будет со временем решена. Основная задача, стоящая перед физикой, - это более глубоко экспериментально изучить гидродинамику горячей плазмы, как это нужно для осуществления термоядерной реакции при высоких давлениях и в сильных магнитных полях. Это большая, трудная и интересная задача современной физики. Она тесно связана с решением энергетической проблемы, которая становится для нашей эпохи проблемой физики № 1.


Так, термоядерна реакція гарна штука, але може існувати, наскільки пам'ятаю, частки секунди, і поки що тільки забирає масу енергії, але не дає.


ККД сонячної батареї. Для інформації та розрахунків.

Відтепер коефіцієнт корисної дії кремнієвої сонячної батареї (або, як це названо в джерелі, ефективність трансформації енергії) становить 26,3 % завдяки останнім розробкам японської компанії Kaneko.
Попереднє рекордне значення цього показника 25,6 %.
Теоретичний ККД кремнієвої сонячної батареї, до якого прагнуть розробники, становить 29 %.
Такі справи...

Найбільша вітрова електростанція світу


         Морська вітрова електростанція Burbo Bank. Діє у Ліверпульській затоці. Належить Великобританії.
         Перша черга ВЕС Burbo Bank будувалася у 2000-2007 рр. і мала 25 вітрових турбін по 3,6 МВт (всього 90 МВт). Друга черга будувалася у 2016-17 роках, складається з 32 вітрових турбін Vestas MHI V164 потужністю 8 МВт (всього 256 МВт). 17 травня 2017 р. в Ліверпулі відбулася урочиста церемонія запуску другої черги ВЕС. Таким чином, на сьогодні Burbo Bank є найбільшою у світі вітроелектростанцією сумарною потужністю 346 МВт. 
         Новині майже 2 місяці, але я подумав, що вона занадто чудова, щоб за цей час застаріти. Ось чому додам ще кілька слів про цю нову іграшку Еола.
         ВЕС Burbo Bank є спільним підприємством, в якому 50 % капіталу належить DONG Energy (Данія) і по 25 % компаніям РКА та LEGO Group (Великобританія).
         Burbo Bank в змозі задовольнити потреби електроенергії 230000 домогосподарств.
         Тільки одна турбіна Vestas MHI V164-8 МВт виробляє більше енергії, ніж сукупно вся Vindeby (перша в світі морська вітрова станція, що була збудована підприємством DONG Energy 25 років тому в Данії).
         На цей момент діють 17 морських ВЕС, побудованих DONG Energy у  Великобританії, Німеччині та Данії, а нещодавно це підприємство запустило свою тисячну за ліком вітрову турбіну.
         Дата запуску першого зразка турбіни Vestas MHI V164-8 МВт - 1 квітня 2014 р.



Довжина  х  ширина  х  висота гондоли   -   20 х 8 х 8 м.
Вага гондоли 390 тон.
Три лопаті довжиною по 80 м.
Вага однієї лопаті 35 т.
Площа, обмежена колом, що описують лопаті генератора -  21124 м2
Висота над рівнем моря до осі ротора генератора 105 м.
Висота над рівнем моря до кінця лопаті у верхньому положенні 187 м.
Виробник турбіни - Vestas Offshore Wind - спільне підприємство між Vestas Wind Systems A/S 50 % та Mitsubishi Heavy Industries 50 %.

Сучасна форсована турбіна Vestas MHI V164 (повідомлення від 26 січня 2017 р.) може генерувати електрику з потужністю вже 9 МВт. І є наразі найбільшою вітровою турбіною у світі.

Довідка.
У 2016 р. берегові ВЕС Великобританії виробили більш як 9 ГВт х год електроенергії, морські - 6 ГВт*год, що задовольняє до 23 % потреб цієї країни у ел.енергії.

За матеріалами сайтів

Чудеса,та й годі!

Всесвітній хаос – це нескінченна кількість порядків.

 

      А ми з вами потім дивуємся –
   ну чому скаче напруга в мережі?

    Видно опори не заземлили,
  от вони й наелектризовалися.

Промисловість постнафтової епохи. Гігафабрика

   
  1    У пустелі, в безпосередній близькості від Electric Aвеню на схід від Спаркс, штат Невада, понад 1000 робітників споруджують те, що буде найбільшою будівлею в світі за площею, зайнятою на поверхні землі. Це Гігафабрика (Gigafactory), де компанія Тесла (TЕSLA) планує виготовляти літій-іонні акумулятори у кількості, достатній, щоб масово клепати електричний транспорт під маркою Тесла згідно з усталеною світовою тенденцією.



          На момент запланованого завершення будівництва, близько 2020 р., площа будівлі Гігафабрики під єдиним дахом складе 5,8 млн квадратних футів (1 фут = 0,3048 м, розраховуємо... 0,54 млн кв. м; або квадрат рівної площі зі стороною 735 м, ну, в принципі, скромноsmile ) Станом на час публікації цієї статті завод займає менше 2 млн кв. футів площі на кількох поверхах. Ступінь готовності будівлі становить 14 %.



          "Я гадаю, що Gigafactory має стати найвражаючим заводом у світі", - сказав Елон Маск про цей проект.



           Тесла вважає, що поширення електричних транспортних засобів уповільнюється через високу вартість батарей, тож компанія, будуючи цей завод, планує різко збільшити обсяг їх виробництва. З 2020 року компанія сподівається виробляти на одному цьому заводі більше батарей, ніж було вироблено в усьому світі в 2014 р. За такого обсягу виробництва батарей, як вважають на Теслі, їх вартість може знизитися більш ніж на 30 %.
            На даний момент на цьому заводі Тесла вже складає акумуляторні блоки але тільки для своїх побутових і промислових станцій зберігання електроенергії. Самі батареї тут ще не виготовляються. Робітники складають акумуляторні блоки з батарей, виготовлених в Японії, на базі яких потім і випускаються відомі накопичувачі Tesla, модифікації Powerpack та PowerWall.
            До кінця цього року (2016, матеріал вже трохи архівний. Авт.) планується, що партнер Тесли з виробництва батарей, компанія Panasonic, фактично виготовлятиме всі деталі батарей тут на місці. Panasonic і Tesla розмістяться на відведених кожному площах об'єкта, який буде виглядати як єдина велетенська споруда. Panasonic виготовлятиме деталі батарей, Тесла складатиме їх в готові вироби.
            Однак ця споруда повністю належатиме компанії Тесла. Тесла навіть будує її самостійно, не залучаючи зовнішніх підрядників.


 
            Гігафабрика розташована у близько п'яти годинах їзди від діючого завода TЕSLA Fremont, California. Це те місце, де нові седани Тесла Модель 3 будуть оснащуватися автомобільними акумуляторами. Нижча вартість батарей, вироблених Гігафабрикою, матиме вирішальне значення для підтримки базової ціни на Модель 3 на відносно доступному рівні у $35000.    
            До 2018 р. Тесла сподівається виготовляти достатньо акумуляторних блоків, щоб складати 500 тис. е-мобілів на рік. Початково цей план було намічено на 2020 р., але Тесла досягне цієї мети на два роки раніше за рахунок прискорення будівництва на відповідних ділянках та першочергового запуску тут всього потрібного устаткування. На 2020 р. Тесла розраховує виробляти достатню кількість акум.блоків для випуску 1,5 мільйона е-мобілів на рік. Крім транспорту, велика частина акумуляторів буде також йти на виробництво так званих стаціонарних сховищ потужності. Цей бізнес, як розраховує Маск, буде рости ще швидше, ніж бізнес електричних транспортних засобів.
            Всередині конструкція Гігафабрики всюди підсилена величезними армуючими X-подібними сейсмостійкими розпірками. Хоча це буде виглядати як одна ціла косокутна в плані споруда, Гігафабрика будується як серія окремих будівель для додаткової мінімізації збитків від землетрусів.



            Будівля має повні чотири поверхи на сталій висоті. Але на деяких ділянках фактично будуть три або два поверхи, що дозволяє розмістити у таких цехах устаткування висотою до кількох десятків футів.
            Е. Маск каже, що інакше ніж емоційно він неспроможний мислити про цей гігантський завод з виробництва батарей. "Я гадаю, це справді досить романтично", - сказав він.
            Після завершення будівництва споруда за формою нагадуватиме діамант, розташований довгою стороною точно по лінії південь-північ. Діамант, інкрустований в пустельну долину, по якій табуни з тисяч диких коней ганяють, змагаючись з гарячими суховіями


    2      Після зборів інвесторів на Гігафабриці, що відбулися на початку січня 2017, стало відомо про нові плани Teслa. Компанія має намір розмістити на даху Gigafactory найбільшу в світі такого роду сонячну електростанцію потужністю 70 МВт, повідомляє Еlectrek.
              Таким чином Tesla підтвердила свій намір не використовувати викопне паливо, а отримувати живлення з відновлюваних джерел енергії (ВДЕ), переважно від сонячних батарей. Цитати з виступів: "Gigafactory буде повністю електричним заводом без використання жодного викопного палива (ані вугілля, ані природного газу або нафти). Ми будемо використовувати 100 % енергії за рахунок поєднання 70 МВт СЕС на даху з наземними сонячними установками"
            Площа геліопанелей на даху буде в 7 разів більша, ніж найбільший діючий на сьогодні "сонячний" дах". В США найбільша СЕС на даху знаходиться в Каліфорнії і має потужність 10 МВт. Дещо більша СЕС такого роду є в Індії - 11,5 МВт. Тож видно, що "сонячний" дах над Гігафабрикою однозначно їх перевершить.
           Tesla також обговорила систему клімат-контролю, очищення води та проблему утилізації: цитати "Велика частина опалення будівлі забезпечується за рахунок тепла отриманого з виробничих процесів. Також Gigafactory використовує шість різних систем очищення та ефективну рециркуляцію близько 1,5 мільйони літрів води. Завдяки цьому вдається заощаджувати 80 % прісної води в порівнянні зі стандартними процесами. Всі типи акумуляторів і модулів Tesla зможуть повторно перероблятися на місці, а металеві деталі - повторно використовуватися".
           Tesla вже повідомляла про початок масового виробництва літій-іонних акумуляторів нового типу "2170". Вони знайдуть застосування не лише в е-мобілі Tesla Model 3, а й будуть універсальними для інших пристроїв.
           І на закуску.
           В грудні 2016 на семінарі "Нові можливості для розвитку відновлюваної енергетики" у Верховній Раді Глава Державного агентства з енергоефективності та енергозбереження України Сергій Савчук заявив про вигоду виробництва сонячних панелей в Україні для таких світових виробників як Tesla і SolarCity. Тут вони зможуть не лише наситити внутрішній ринок (кількість домогосподарств, що встановлюють сонячні батареї постійно зростає), а й налагодити експорт.
           "Виробляти сонячні панелі у нас, коли курс гривні до долара 27, значно дешевше, ніж привозити їх з Китаю або з Польщі. Тому ми могли б тут виробляти і продавати сонячні панелі, й навіть експортувати», - зазначив Савчук.
            Згідно з національним планом енергоефективності, до 2020-го року Україна має інвестувати в розвиток "зелених" джерел енергії близько € 16 млрд.

Не газом єдиним...

        Мова про найбільші заплановані проекти у сфері сонячних електростанцій і заразом про "протидію" нафтогазової мафії розвитку альтернативної енергетики.
        Можна ще стикнутися з думкою, що власники газових і нафтових родовищ затримують, чинять відчайдушний спротив розвитку "зеленої" енергетики, котра відкушує чим далі більші шматки ринкового пирога. Насправді якраз нафтогазові промисловці спроможні і вже давно готові виступити в якості потужного інвестора цієї галузі. По-перше, цим вони певним чином вирішують проблему залучення в обіг коштів, що повноводними ріками біжать до них від їхнього надприбуткового заняття. По-друге, постійно великі, хоча і не зростаючі вже обсяги нафти, а особливо газу та вугілля ще тривалий час будуть видобуватися, щоб забезпечувати базову потребу людства в електроенергії та теплі. Ну, і по-третє, істотні, помірно зростаючі обсяги тих же нафти, газу та вугілля будуть видобуватися для потреб хімічної промисловості та металургії. Словом, важко назвати людей, хто б ще так залишився при своїх інтересах з розвитком відновлюваних джерел енергії, як представники нафто- і газодобуваючого бізнесу.
          Спробуємо уявити конкретніше, чи пошкодують нащадки гордих кочових арабських племен (що свого часу завдяки нафті пересіли з верблюдів у б'юїки з шинами, інкрустованими діамантами, та обшивкою кузова із золота) про майбутнє відкриття у своїх пісках велетенської сонячної електростанції, побудова якої запланована в Саудівській Аравії. СЕС чудові тим, що вводяться поступово, тобто станція будується (приростає новими панелями) і водночас генерує більше і більше енергії. Проектна потужність згаданої СЕС становитиме 200 ГВт. 200 ГІГАВАТ, Карл! 200.000 МВт!!!!shock omg
Що ж це таке? Зараз найпотужніша у світі СЕС має 648 МВт - менше 1 ГВт. Що ж таке 1 ГВт? Це середня потужність нової вугільної електростанції, побудованої на основі останніх прогресивних досягнень у технологіях,  наприклад, подібної.
Отже, до 2030 р. Саудівська СЕС має вийти на проектну потужність у 200 вугільних ТЕС. Вона обіцяє стати найбільшою на планеті СЕС. Коштуватиме $200 мільярдів.
        Також у найближчій перспективі заплановані до будівництва "крихітки" 2 ГВт у Греції, 1,3 ГВт - у США, 1.18 ГВт - у Еміратах та 1 ГВт - у Китаї. Пишуть і про менш грандіозну СЕС у Мексиці на $650 млн.
        Що ж тут додаси...
Si Слава Кремнію Si


#s3gt_translate_tooltip_mini { display: none !important; }

Приємні новини. Зростання ККД сонячних панелей

           Нагадаємо, на початок 17-го року ефективність чисто кремнієвих геліопанелей становила 26,3 %. А у 2016 році рекордний ККД геліопанелей становив 29,8 %.
           В березні 2017 група інженерів з німецького Інституту сонячних енергосистем імені Фраунгофера (ISE) і австрійський виробник напівпровідників EV Group (EVG) досягли ефективності кремнієвих багатоперехідних сонячних елементів до 31,3 %.
           І ось група інженерів з Національної лабораторії з вивчення відновлюваної енергії США (NREL), Швейцарського центру електроніки і мікротехнології (CSEM) і Федеральної політехнічної школи Лозанни (EPFL) розробила сонячні модулі з багатоперехідною структурою і рекордними показниками ефективності.
           Щоб домогтися максимального ККД, вчені експериментували з кремнієвими модулями і різними напівпровідниковими матеріалами III-V груп. Двохперехідні сонячні панелі на основі гетеропереходу кремній - арсенід галію (GaAs) продемонстрували ККД 32,8 %, побивши попередній рекорд.  Інженери також створили трьохперехідні модулі з шаром фосфіду галію та індію (GaInP) з ККД 35,9%.
           
Однак поки ціна компонентів перешкоджає широкому застосуванню сонячних панелей таких типів. При середньому ККД 30 % один ват від модуля на основі GaInP обійдеться в $ 4,85. А один ват від панелі на основі GaAs - в $ 7,15. Інженери припускають, що підвищення ККД до 35 % і збільшення обсягів виробництва дозволить знизити вартість до $ 1 за ват.    
            "Таке вже бувало.
Наприклад, ціна китайських фотоелементів впала з $ 4,5 за ват в 2006 році до $ 1 за ват в 2011 », - повідомляють в NREL.
          

Сонячна електростанція в Марокко

Автор оригінального тексту Sandrine Ceurstemont

            Велетенське енергетичне поле в Африці, спроможне постачати енергію до Європи... На краєчку марокканської пустелі ми відвідали одну з найбільших сонячних електростанцій, котра допомагає уявити енергетичне майбутнє світу.

            Мінібус котиться через широчезне плато по щойно прокладеному асфальту. На південь, куди сягає око, лежать вкриті тріщинами простори Мароканської пустелі.



            Проте ця піщана рівнина вже не така первісно-незаймана, як то було колись. Цього року вона стала місцем розташування однієї з найбільших у світі сонячних електростанцій.



         Сотні кривих дзеркал, кожне завбільшки з автобус, впорядковані у ряди і вкривають територію у 1400000 кв. м.  або 200 футбольних полів. Цей величезний комплекс розташувався на пекельному осонні біля підніжжя Атласних гір у 10 км від міста Уарзазате, яке ще називають Двері у пустелю.



         Поряд із задоволенням місцевих потреб Марокко сподівається, що коли-небудь буде експортувати енергію до Європи. А ця електростанція і є тим прототипом, котрий допомагає уявити енергетичне майбутнє світу і місце в ньому Африки.
         Ніби навмисно у день мого відвідання небо було захмареним. "Сьогодні не буде вироблено аніскільки електрики", - сказав Рашид Байєд, представник Мароканської агенції з питань сонячної енергетики, що відповідає за впровадження цього флагманського проекту. Однак випадковий день, коли сонце "вимкнено", тут нікого особливо не засмучує. В цій місцевості буває в середньому 330 безхмарних днів на рік.
         Після багатьох років фальстартів геліоенергетика нарешті почала рухатися до своєї доскналості, як і обдаровані сонцем країни нарешті скористалися цим щедрим джерелом екологічно чистої енергії. Марокканське енергетичне поле одне з кількох в Африці, а також подібних електростанцій, збудованих на Близькому Сході (Іорданія, Дубай, Саудівська Аравія). Падіння вартості сонячної енергії зробило її життєздатною альтернативою енергії від спалювання нафтопродуктів навіть у найбагатших нафтою районах світу.
         Noor 1, перша черга Марокканської СЕС, вже перевершила очікування з огляду на кількість енергії, яку вона продукує. Це обнадійливий результат з точки зору мети Марокко: зменшити свою частку викопного палива, зосередивши увагу на поновлювані джерела енергії, одночасно задовольняючи зростаючі енергетичні потреби, які щороку ростуть приблизно на 7 %. Стабільний уряд і економіка Марокко сприяли цій країні в отриманні інвестицій, наприклад, Європейський союз виділив 60 % від вартості проекту Уарзазате.



        Країна до 2020 року планує задовольняти 14 % своїх потреб енергії за рахунок геліоенергетики, а через залучення інших поновлюваних джерел, таких як вітер і вода, вона прагне довести частку цих видів своєї енергії в сумі до 52 % у 2030 році. Це ставить Марокко в один ряд з такими країнами, як Великобританія, яка хоче генерувати 30 % своєї електроенергії з поновлюваних джерел енергії до кінця цього десятиліття, та США, президент якої Обама встановив планку у 20 % до 2030 року (Tрамп пригрозив збавити частку поновлюваних джерел енергії, але його слова не можуть мати великого впливу. Значна частина політики контролюється на рівні окремих штатів, і великі компанії вже взяли курс на екологічно чистіші і дешевші альтернативи.)
         Через відсутність сонця в день мого візиту сотні дзеркал стояли тихо і нерухомо. Команда уважно стежить за прогнозами погоди аби передбачити перемикання мереж на наступний день, що дозволяє залучити паралельні джерела енергії до виробництва, коли небо похмуре. Але зазвичай відбивачі можна почути, коли вони рухаються разом, набуваючи кращого положення відносно сонця, немов гігантське поле соняшників. Дзеркала фокусують енергію Сонця на синтетичне мастило, яке тече через мережу труб. Нагріваючись до температури 350° С, гаряче мастило віддає тепло воді для отримання водяної пари під високим тиском, яка подається на лопатки ротора турбіни та обертає генератор, що знаходиться з ротором турбіни на одному валу. "Це той самий класичний процес добування електроенергії, що працює при спалюванні викопного палива, за винятком того, що ми беремо тепло від сонця", - говорить Байєд.
          Електростанція продовжує виробляти електроенергію і після заходу сонця, коли настає час пікових навантажень. Частина енергії, отриманої вдень, зберігається в резервуарах з розплавленими солями нітратів натрію та калію, що підтримує виробництво тривалістю до трьох годин. Після запуску другої черги СЕС Noor 2, виробництво електроенергії після заходу сонця буде тривати до 8 годин.
          Крім виробництва електроенергії проект Уарзазате допомагає місцевій економіці. Близько 2000 робітникам була надана робота протягом перших двох років будівництва. Дороги, прокладені для забезпечення доступу до станції, також з'єднали довколишні села, полегшуючи дітям діставання до шкіл. Водогін, прокладений до об'єкту будівництва, також під'єднав 33 села до водопровідної мережі.
          Незважаючи на це, деякі місцеві жителі мають проблеми. Абдельлатіф, який живе в місті Загора близько 120 кілометрів на південь, де високий рівень безробіття, вважає, що станція повинна зосередитися на створенні постійних робочих місць. Його друзі, що були найняті на роботу там, працювали за контрактом протягом лише декількох місяців. Після повного введення в дію станція потребує лише 50 ... 100 обслуговуючих робітників, тож закінчення буму з наданням роботи не за горами. "Компоненти обладнання виробляються за кордоном, але було би краще робити їх на місці, щоб з'явилася постійна поточна робота для місцевих", - говорить він.
          Гострішою проблемою є те, що для очищення дзеркал та охолодження пристроїв сонячна електростанція забирає велику кількість води від місцевого водосховища Ель Мансур Еддабі (El Mansour Eddahbi). Навіть до будівництва СЕС нестача води була проблемою в цих напівпустельних землях, бувають часті перебої з водою. Сільськогосподарська земля в долині Драа на південь звідси залежить від води з водосховища. Хоча Мустафа Селлам, менеджер СЕС, стверджує, що вода, використовувана станцією, становить до 0,5 % від поставок з водосховища, що мізерно мало в порівнянні з її потужністю. Все ж ці витрати на потреби СЕС достатні, щоб деяких фермерів поставити у нерівні умови і породити суперечки між ними. Тож СЕС впроваджує вдосконалення, щоб зменшити кількість води на свої потреби. Замість того, щоб покладатися на воду для очищення дзеркал, використовується стиснене повітря. І хоч зараз Noor 1 використовує воду для охолодження відпрацьованої пари з турбін, щоб перетворити її назад у воду і повторно використовувати у наступному циклі, з часом буде встановлено суху систему охолодження, яка використовує повітря.
            Нові частини СЕС наразі будуються. Noor 2 буде схожий на Noor 1, але Noor 3 буде експериментувати з різними конструктивними типами. Замість рядів дзеркал енергія Сонця буде захоплюватися і зберігатися  однією великою вежею, яка, як вважають, буде ефективнішою. Сім тисяч плоских дзеркал навколо вежі спрямують сонячні промені в напрямку приймача у верхній частині, все це потребує набагато менше місця, ніж за сучасного розташування дзеркал. Розплавлені солі, що заповнюють внутрішню частину вежі буде сприймати і зберігати тепло безпосередньо, усунувши потребу в гарячому мастилі. Подібні системи вже використовуються в Південній Африці, Іспанії та на кількох площадках у США - у пустелі Мохаве (Каліфорнія) та в Неваді. Але недавно зведена конструкція в рамках проекту Уарзазате є найвищою в світі конструкцією такого роду (26 м).
            Є інші станції в Марокко у стадії будівництва. В наступному році почнеться будівництво на двох площадках на південному заході, недалеко від Лаайюна і Буждура, і продовжиться будівництво СЕС поблизу Taтa і Міделта. Успіх таких СЕС в Марокко та в Південній Африці може спонукати інші африканські країни зайнятися сонячною енергією. Південна Африка вже увійшла у десятку найбільших в світі виробників сонячної енергії. Вже і Руанда є домом для першої сонячної станції Східної Африки, яка була відкрита в 2014 р. Великі СЕС плануються для Гани, Уганди та Мозамбіка.
           Тож африканське сонце може в кінцевому підсумку перетворити континент у постачальника енергії для решти світу. Селлам покладає великі надії на Noor. "Наша головна мета полягає в тому, щоб стати енергетично незалежною, але якщо одного чудового дня ми виробимо зайве, то ми могли б також поставити енергію у інші країни", - говорить він. Уявіть, як ви заряджаєте електромобіль в Берліні електроенергією, виробленою в Марокко!
           Хмари в Уарзазате як надійшли, так і розсіялися, Африка планує сонячні дні.

ps: на жаль, жодних енергетичних харатеристик електростанції не наведено, ні поточних, ні проектних величин... для такого способу зберігання цікаво було б знати ККД станції і порівняти цю характеристику з такою ж для варіанту отримання електрики через фотоелектричний ефект і накопичення в електричних акумуляторах
           

Так ось чому немає вітряків...

Так ось чому у нас немає вітряків...