Как бы не показалось этоудивительным, но очень многие свойства окружающего нас мира можно понять, изучив свойства самой элементарной частицы – фотона. Но понять его свойства возможно лишь при условии нового понимания свойств плазмы, основы всего сущего.
При этом понимание это должно быть увязано с идеей торсионных полей. В физической науке под плазмой понимают “четвертое состояние” вещества, представляющее, по мнению физиков, ионизированный газ, в котором положительные и отрицательные заряды равны. Этим объясняют электронейтральность плазмы. В состоянии плазмы, утверждают ученые, находится подавляющая часть вещества Вселенной: звезды, галактические туманности, межзвездная среда. Солнечный ветер также, по мнению физиков, представляет собой плазму. Считается, что плазма может быть высокотемпературной (от 100 тыс. до 10 млн. градусов) и низкотемпературной (ниже 100 тыс. градусов).
Не знаю как у читателя, у меня же сразу возникают вопросы. Как были определены указанные пределы температур? Что является “носителем” таких высоких температур? Я всегда “запинаюсь” в подобных ситуациях, поскольку возникают серьезные сомнения в корректности модели.
Измерить инструментальными методами температуру в диапазоне от 3000 до 5000 градусов весьма сложно. Эти измерения будут отличаться весьма большой приблизительностью, поскольку единственными критериями в этой части шкалы могут быть лишь температуры испарения различных материалов. Наивысшей температурой испарения обладает вольфрам (5930ОС). Однако эта точка будет приближенной, поскольку является крайней в шкале температур, замеряемых инструментально. Температуры порядка (6000 – 20000)ОС измеряются уже косвенно. Поэтому точность их будет весьма приблизительной. Все, что находится за верхним пределом – есть лишь прогностическая оценка, основанная на предположениях.
Однако у тепла всегда и во всех случаях имеется вполне конкретный носитель. Можно сказать также, что суммарное количество этого носителя отражает реальную температуру тела, вещества и так далее. Поэтому выше температуры этого носителя значений температуры тела или вещества не может быть. Это означает, что просто так тепло не может накапливаться.
Свойства плазмы физики описывали сообразно тем методам, которые использовались для ее получения. Отсюда и появилось понимание плазмы как ионизированного газа. На самом же деле “чистая” плазма является и “чистой” энергией. Именно температура этой “чистой” энергии будет 20000ОС, что и наблюдается, например, в короне Солнца. Если же исходное вещество не полностью преобразовалось в плазму (доведено до состояния плазмы частично), то температура этой смеси будет лежать в диапазоне от 6000 до 20000 градусов в зависимости от степени чистоты. Плазма электрически нейтральна лишь в той мере, в какой она свободна от разрушенных частиц вещества. По этой причине следует назвать, в качестве главного, другое свойство – способность управления положением плазмы вращающимся электромагнитным полем (вихрем ЭМП). Именно это и пытаютсявоспроизвести в токамаках для создания управляемой термоядерной реакции, что, безусловно, обречено на неудачу. Другим фундаментальным свойством плазмы является ее способность при определенных условиях возникать или “рождаться” из физического вакуума, а при других – растворяться в нем обратно. Только этими свойствами должны были бы оперировать сторонники теории Большого Взрыва. Но им не хватало для полного понимания информационно-энергетической модели вещества. Правда, тогда они пришли бы к противоположным выводам.
Вот, собственно, все, что следует понимать под плазмой. А температуры, указанные в источниках для “высокотемпературной” и “низкотемпературной” плазмы, не более, чем необоснованные ничем предположения. И температура термоядерного процесса не будет выше 20000С. Предположение, что в недрах Солнца идет термоядерный процесс, и температура там достигает 10 млн. градусов нельзя считать верным.
Более того, в недрах Солнца идет вообще другой процесс. В сердцевине светила под действием сил гравитации идет процесс синтеза водорода и гелия из структур физического вакуума. Процесс идет с постепенным разогревом масс водорода и гелия от центра Солнца к его поверхности поскольку удаляться выделяющемуся теплу просто некуда. Вновь нарождающееся вещество вытесняет ранее родившееся к периферии (поверхности) Солнца. Этот процесс сопровождается вихревыми процессами, делает подъем вещества неоднородным. В итоге возникают местные зоны перегрева или, напротив, более холодные зоны. Это приводит к появлению вспышек на Солнце, к взрывам протуберанцев и так далее. На поверхности светила атомы водорода и гелия освобождаются от электромагнитных оболочек. В итоге образуется высокотемпературная плазма (20000грС).
СПИНОР ИНТЕРНЕШНЛ(с)