хочу сюди!
 

Татьяна

56 років, телець, познайомиться з хлопцем у віці 55-58 років

Замітки з міткою «физика»

Неразгаданные загадки науки.


1. Эффект плацебо

Солевой раствор обезболит не хуже морфия, если ввести его после длительного приема этого наркотика пациенту, не сообщая ему о подмене. Но стоит к солевому раствору добавить налоксон, блокирующий действие морфия, как анестизирующее действие исчезнет. Почему так происходит, наука не знает. Есть много других примеров изменения в физиологическом и психологическом состоянии человека после приема безвредного препарата, назначаемого под видом какого-либо эффективного лекарства.


2. Проблема горизонта

Считается, что нашей Вселенной 14 миллиардов лет, а между крайними точками, которые можно увидеть, – 28 миллиардов лет. Было обнаружено, что всюду температура фоновой радиации одинакова. Для ее создания потребовалось бы расширение Вселенной до сегодняшних размеров за 10-33 секунд! Но могло ли такое быть? Равномерный “нагрев” остается для науки аномалией.


3. Ультрасильное космическое излучение

Космическими лучами называют перемещающиеся почти со скоростью света протоны (или тяжелые атомные ядра).Один из их источников – появление сверхновой. Максимальная возможная энергия космических лучей равна 5 ? 1019 электрон-вольт (предел Грейзена-Зацепина-Кузьмина), если зародились они не в нашей галактике. Десять лет назад впервые зафиксировали частицы с большей энергией, которые возникли не в нашей галактике. То ли измерения неправильные, то ли специальная теория относительности Эйнштейна, но ультрасильное космическое излучение есть, а объяснения ему – нет.


4. Белфастские результаты гомеопатии

Фармаколог Мадлен Эннис решила доказать абсолютную несостоятельность гомеопатии, а вместо этого получила ошеломляющий результат: сколь сильно бы не был разбавлен раствор с неким препаратом, он продолжает обладать лечебными свойствами. Даже если это противоречит здравому смыслу, ведь в воде не оставалось уже ни одной молекулы лекарства. Разве что незримый след от него.


5. Темная материя

Что такое гравитация, подробно рассказывают учебники физики. Но они умалчивают, что если научные теории верны, Вселенная должна развалиться. Потому как во вращающихся галактиках недостаточно массы для гравитационного притяжения, создающего центростремительные силы. Где же ошибка? Возможно, существует “темная материя”, которая должна составлять 90% массы Вселенной, но вот обнаружить ее так и не удалось.



6. Марсианский метан

Если почва на Марсе выделяет метан, то там должна быть жизнь. Но CH4 есть, а жизни — нет. Это обнаружили приборы, отправленные туда с Земли: ни одной органической молекулы не было найдено. Ученым остался еще один способ обнаружить жизнь: найти “хиральные” молекулы (они являются зеркальным отображением друг друга) и установить их соотношение. Если правосторонних (левосторонних) молекул больше, чем их левосторонних (правосторонних), то жизнь на красной планете все-таки есть. Или была.


7. Тетранейтроны

Четыре года назад во время эксперимента обнаружили тетранейтроны: четыре нейтрона, которые связаны в систему. Это противоречит принципу исключения Паули: уже два протона или нейтрона в одной системе не могут характеризоваться похожими квантовыми свойствами, а четыре – тем более. К тому же ядерные силы не могут удержать даже два одиночных нейтрона. Нейтронные звезды подтверждают существование тетранейтронов, а вся Вселенная – нет. Потому как она бы разрушилась, не успев расшириться, если бы такие частицы существовали продолжительное время.


8. Аномалия Пионера

Два запущенных еще в 70-х годах космических корабля Пионер-10 и Пионер-11 должны были улететь за пределы солнечной системы и быть благополучно забыты. Но ускорение неизвестной природы, менее нанометра на секунду в квадрате, отклонило Пионер-10 на 400 000 километров от курса. То же произошло и с Пионером-11. Известные причины (ошибки программного обеспечения, солнечный ветер, топливную утечка) уже исключены. Ученые продолжают строить догадки, что же вызвало наблюдаемое ускорение.


9. Темная энергия

В 1998 году стало известно, что Вселенная расширяется с нарастающей скоростью. А согласно постулатам современной физики, скорость должна снижаться. Одно из возможных объяснений – темная энергия (гипотетическая форма энергии, имеющая отрицательное давление и равномерно заполняющая всё пространство Вселенной), о которой толком ничего неизвестно.



10. Обрыв Kuiper

За Плутоном есть пояс астероидов, который неожиданно сменяется абсолютно пустым космосом. Одна из догадок – существование десятой планеты, очистившей участок. Но ее так и не удалось обнаружить, ведь изучить ту область солнечной системы с Земли проблематично. К 2015 году зонд Новые горизонты, отправленный к этому загадочному месту, возможно, поможет объяснить это явление.


11. Сигнал из космоса

В 1977 году американский астроном Эман зафиксировал необычный сигнал из созвездия Стрельца продолжительностью 37 секунд. Импульс радиации имел узкий диапазон радиочастот, около 1420 мегагерц. Все передачи такой частоты запрещены международным соглашением. Естественные источники радиации обладают гораздо более широким спектром частот. Загадочный источник сигнала остается неизвестным.


12. Непостоянные постоянные

Свет от квазаров на своем пути длиной в миллиарды лет проходит через межзвездные облака металлов (железа, никеля, хрома). В 1997 при его исследовании обнаружили, что он поглотил некоторые из фотонов света квазара. Но не те, которые ожидалось. Единственное непроверенное разумное объяснение состоит в том, что постоянная тонкой структуры, или альфа, имела различное значение в то время, когда свет проходил через облака. Но ведь альфа определяет, как свет взаимодействует с материей, и не должна меняться. Ее значение зависит от заряда электрона, скорости света и постоянной Планка. Какая же постоянная изменилась?


13. Холодный ядерный синтез

Эксперименты показали, что погружение электродов из палладия в тяжелую воду (в ней кислород соединен с изотопом водорода дейтерием) может сгенерировать колоссальное количество энергии. Возможно, ядра дейтерия под действием напряжения на электродах перемещаются в молекулярную решетку палладия и позволяют веществам сплавиться со значительным выбросом энергии. Но наука-то утверждает, что плавка при комнатной температуре невозможна!
Все попытки объяснить эти явления рождают больше вопросов, чем ответов.

Задача по физике.

В Киве загорелось хранилище Нацбанка.
— t пламени — 800'C.
— t кипения золота — 2970'C.
Вопрос: сколько золота испарится из хранилища?

Мужчина и женщина, теория и практика.

С известным физиком Ферми случилась такая история. В его квартире было холодно, и жена предложила вставить вторые рамы. Поскольку Ферми был человеком науки, он решил сначала теоретически рассчитать, какой эффект дадут эти рамы. Расчеты показали, что эффект незначителен. Жена не прислушалась к этим доводам и все-таки вставила рамы. 
Слушайте женщин!
В квартире стало заметно теплее. Ферми удивился, вернулся к расчетам и обнаружил ошибку.

Квантовые крестики-нолики

Не секрет, что в последнее время ведутся активные попытки построить квантовый компьютер. Вкратце, зачем это нужно. Доказано, что квантовый компьютер (когда будет построен) сможет за короткое время решать задачи, которые нынешние компьютеры (классические) могут решить лишь за тысячи лет непрерывной работы. Одной (и самой главной, из-за чего на исследования выделяются огромные деньги) из этих задач является нахождение простых множителей заданного числа (взлом шифрования с открытым ключом RSA). И, соответственно, создание новых, квантовых систем шифрования и защищенных линий связи. Возможен также и квантовый интернет, особенностью которого будут «запутанные» квантовые состояния, связывающие удаленные компьютеры между собой. А там, где новые компьютеры, там и новые игры.

В этом посте я попытаюсь рассказать о двух «квантовых» вариантах простой игры в крестики-нолики. Играть в эти квантовые крестики нолики можно без всякого квантового компьютера. Квантовые крестики-нолики в данном случае важны как методическое указание, как простейший пример того, что такое квантовая суперпозиция и редукция волновой функции при измерении.
...

Как распознавать псевдонауку. Метод Фейнмана.

В начале декабря пресса распространила результаты исследования на тему восприятия и распознавания псевдонаучной ерунды, изложенной красивыми наукоподобными словами. Подхватив правильный посыл ученых, большинство медиа, тем не менее, не пошли дальше очевидного вывода о том, что любители глубокомысленных цитат глупы.

И только автор Big Think, нейропсихолог Саймон Оксенхэм, задумался о том, как изменить ситуацию. Что делать, если вы не обладаете даже базовыми знаниями в сфере, о которой читаете? Как в таком случае распознать пустышку или откровенную липу, не прибегая к поиску дополнительной информации?

Оксенхэм вспомнил лекцию, которую прочел в 1966 году гениальный физик Ричард Фейнман, известный своей нетерпимостью к псевдонаучной деятельности (Фейнман называл ее «наукой самолетопоклонников»). В отрывке, приведенном ниже, ученый объясняет разницу между знанием названия чего-либо и настоящим пониманием сути:
Как распознавать псевдонауку и не вестись на херню: метод Фейнмана
«Мальчик сказал мне:

– Видите ту птицу, которая сидит на пне? Как она называется?

Я ответил:

– Не имею ни малейшего понятия.

Тогда мальчик сказал:

– Это красногрудый дрозд. Ваш отец не особо чему научил вас в плане науки».

Я улыбнулся, потому что отец как раз научил меня, что название птицы ничего мне о ней не скажет. Он сказал бы: «Видишь эту птицу? Это красногрудый дрозд, но в Германии ее называют halsenflugel, а в Китае – чун лин, и даже если ты будешь знать все ее названия на всех языках, ты ничего не узнаешь о самой птице – только о людях, о том, как они ее называют. Ты не узнаешь, как дрозд поет, как учит птенцов летать, как пролетает летом много миль, и никто не знает, как он находит верное направление. Есть разница между знанием слов и знанием того, что происходит.

В результате теперь я совершенно не способен запоминать имена и названия, так что когда люди обсуждают со мной физику, я довожу их до белого каления своими «эффект Фитц-Кронина? Это что за эффект, в чем он заключается»?

Однажды мне в руки попал учебник по основам научного знания для первоклассников, и я увидел, как первый же урок демонстрирует неудачный подход к обучению – он начинался с неверной мысли о том, что такое наука. В книжке приведена картинка, изображение заводной собачки, с подписью: «что приводит ее в движение?». За ней следует изображение настоящего пса и снова подпись: «а что заставляет двигаться его?». Затем идет картинка с мотоциклом и «что заставляет его двигаться?», и так далее. Сначала я подумал, что авторы подводят к рассказу о разных областях, которыми занимаются ученые – физика, биология, химия – оказалось, нет. Правильный ответ приводился в специальном издании этой книги для учителей: «их заставляет двигаться энергия».

Энергия – это очень тонкая концепция. Ее очень, очень сложно правильно понять, то есть понять так, чтобы этим пониманием можно было воспользоваться, чтобы на основе понимания идеи энергии вы могли рассуждать и получать корректные выводы. Это, конечно, задача не для первоклассника. Но объявить ему: «энергия приводит все в движение» – равнозначно тому, чтобы сказать: «Бог велит всему двигаться», или «дух вызывает движение», или «движение обусловлено свойством движимости».

Все это – только определение энергии, его нужно перевернуть. Мы можем сказать: «нечто может двигаться потому, что обладает энергией». Но не: «то заставляет тело двигаться – это энергия». Здесь, как и с утверждением об инерции, есть очень тонкая разница. Выражаясь яснее: когда вы спрашиваете ребенка, что заставляет двигаться заводную собачку, вы должны думать о том, что вам ответит обычный представитель рода человеческого. А он ответит: «я завожу пружину, она пытается раскрутиться и приводит в движение механизм».

Вот это отличный способ начать курс об основах науки! Разберите собачку, посмотрите, как она работает. Оцените изящество механизма, рассмотрите его составляющие, узнайте о том, как собрана игрушка и восхититесь изобретательностью ее создателей. Вопрос из учебника хорош, но предлагаемый первокласснику ответ неудачен, потому что он всего лишь пытается дать ребенку определение энергии вместо того, чтобы чему-то его научить. Представьте, что школьник скажет: «А мне не кажется, что это энергия заставляет ее двигаться». И как вы будете с ним спорить?

И вот я наконец понял, как определить, научили ли вас идее или научили только ее названию. Проверяйте это так: пробуйте пересказать своими словами, без использования нового термина, суть изученной идеи. Расскажите, что вы узнали о движении собачки, не употребляя слова «энергия». Не можете? Значит, вы не узнали ничего, никакого научного знания».

Метод Фейнмана также подходит для проверки авторитетов на псевдонаучную херню. Если спикер не может изложить свои тезисы простыми словами, понятными неспециалисту, это значит, что он сам их не понимает. Когда спикер, обращаясь к широкой аудитории, использует терминологию без пояснений, слушатели должны задавать вопрос «почему?» до тех пор, пока ответы не станут им понятны (или пока спикер не сдастся, прекратив общение). В противном случае это было зря потраченное время.

Звуковики в истории: ведомые звуками космоса



Эпицентр жизни звуковиков – в их мыслях: абстрактных и неуловимых. Они могут писать книги, сочинять стихи, конструировать модели и даже исследовать космос – и все ради того, чтобы достучаться до небес и найти то, что сокрыто от остальных, найти то, о чем тайно догадываются только они сами. 

Это непреодолимое желание можно осознавать или нет, но игнорировать – никогда. Такова их звуковая судьба: в одиночку или вместе делать то, на что их толкает природа, жизненное предназначение. Объединяясь, они способны совершить прорыв, какой в 20 веке совершили звуковики Циолковский и Королев. 

Первая часть трилогии о реализованных звуковиках в истории посвящена тем, кто был очарован таинственными звуками космоса и начал его освоение. Читайте далее http://www.yburlan.ru/biblioteka/fiziki-i-liriki-chast-1-zvuki-kosmosa-dlja-teh-kto-slyshit

Про некоторые научные достижения.


Наука постоянно открывает новые грани и постоянно предлагая новые идеи, чтобы сделать наши жизни легче. Это список 10 самых сумасшедших научных достижений, которые Вы можете увидеть в ближайшем будущем. 

10 умопомрачительных научных успехов


10. Цемент, проводящий электричество. 

Когда дело доходит до хороших проводников цемент уж точно не приходит Вам на ум. Учёные из университета Аликанте недавно изобрели цемент, у которого есть способность проводить тепло и электричество достаточно эффективно, не ставя под угрозу такое своё важно качество, как прочность. В то время как цемент, проводящий электричество, может и не походить на “умопомрачительный научный успех”, у него есть огромные потенциал для использования в аэропортах и на дорогах, например чтобы предотвращать образование льда на поверхности дороги. Мало того, что цемент может использоваться отдельно, он может также наноситься в качестве покрытия на существующий, чтобы дать ему удельную теплопроводность и электропроводность. Этот новый цемент содержит углеродные нанотрубки, которые и дают ему проводимость и прочность, которые так необходимы. В то время как материал показал хорошие результаты в многократных тестах, разработчики продолжают улучшать его проводимость и прочность. 




9. Конденсат Бозе-Эйнштейна. 

Сатиендра Бозе и Альберт Эйнштейн впервые выдвинули гипотезу конденсата Бозе-Эйнштейна ещё в 1920-х. Конденсат Бозе-Эйнштейна имеет чрезвычайно низкую температуру, это можно сказать противовес плазме, которая имеет чрезвычайно высокую температуру. В то время учёные ещё не могли привести скорость движения частиц к абсолютному нулю или состоянию, в котором нет никакого молекулярного движения, но они уже были в состоянии произвести самые низкие температуры прямо здесь на Земле. Именно во время одной из этих “глубоких заморозок” ученым удалось дойти до, практически, нуля (от нуля температура отличалась только миллиардной долей). Сегодня, используя атом Рубидия, учёные Корнелл и Веимен обнаружили, что атомы при взаимодействии формируют группу “супер атомы”. Фактически они первыми задокументировали конденсат Бозе-Эйнштейна. Фактически молекулы остановили время, но ещё больше их удивило то, что в конце атомы сформировали каплю. 




8. LiquiGlide. 

В MIT изобрели материал, к которому просто ничто на Земле не может прилипнуть. И назвали они его LiquiGlide. К счастью, он не токсичен, и главное что к нему ничто не прилипает и при этом он безумно скользкий. Хочется отметить, что и до него были подобные материалы, но этот первый нетоксичный материал. Очень круто будет использовать его для шампуней, зубных паст, кетчупа, только конечно с внутренней стороны. Мало того, что это может сэкономить деньги компаний, избавляя их от необходимости создавать дорогостоящие специализированные бутылки, это также предотвращает нервозность, связанную с попытками выдавить остатки кетчупа на Вашу тарелку. Это работает и со стеклом, и с определённым видом пластмассы. Компании начинают интересоваться удивительным материалом, и он должен появиться в бутылках очень очень скоро. 



7. Газ для низкого голоса. 

Мы все слышали о гелие, который на время даёт людям высокий голос, но Вы когда-либо слышали о газе, который может заставить Вас походить на Дарта Вейдера? Шестифтористая сера - это искусственный состав с некоторыми довольно интересными и уникальными способностями. Всё это из-за того, что это - невероятно плотная и тяжелая частица. Мало того, что Вы можете вдохнуть его и внезапно стать Джигурдой, Вы можете пустить в ход различные предметы и увидеть, как с помощью газа они словно парят в воздухе. Из-за его веса, скорость звука значительно замедляется, пытаясь пройти через газ и заставляя Ваш голос становиться глубже. Также, это вещество опускается на дно контейнера и имеет плотность, позволяющую продуктам плавать по ней. В то время как у нее есть и забавное, и практическое применение, надо соблюдать осторожность, вдыхая его, потому что он может опуститься к основанию Вашего лёгкого и остаться там. 




6. Апсалит (Upsalite) 

Самое впитывающее вещество, известное человеку, было изобретено… случайно. Исследователи в университете Упсалы в Швеции случайно оставили включённым оборудование, и углекислый магний, с которым они работали, превратился в порошок, с площадью поверхности 800 метров всего на 1 грамм. Этот чрезвычайно пористый материал также обладает чрезвычайными впитывающими свойствами. Самый дорогой впитывающий материал, используемый сейчас - цеолит, не дотягивает до нового по своей поглотительной способности и проигрывает уме в разы. Материал имеет большое значение для контроля за влажностью и для нефтяного бизнеса. Впечатляющий материал удивительно лёгок и недорог. Поры, покрывающие поверхность маленького Апсалита, меньше, чем 10 миллимикронов (миллимикрон - миллиардная часть метра). 



5. Нитинол (Nitinol). 

Если попросить описать свойства памяти металла и эластичности одним словом, Вам ничего не придёт на ум, если Вы не слышали о нитиноле. Нитинол - сплав никеля и титана, созданный ещё в 1958 году. Его свойства существуют в двух фазах. При низких температурах сплав может деформироваться, но возвращается обратно в форму при высоких температурах. Эта способность возвращаться в первоначальную форму известна как тепловой эффект запоминания формы. Наряду с невероятной памятью, нитинол также известен способностью быть чрезвычайно полезным из-за его эластичности. Сверхэластичность идёт рука об руку с тепловым эффектом запоминания формы. Нитинол очень полезен в отраслях, где требуется большая гибкость. В то время как большинство металлов, как известно, ломаются после непрерывного сгибания, нитинол, как доказано, почти неуязвим для ломки под высоким напряжением. Начиная со времени его изобретения, он использовался во множестве промышленных и технологических продуктов. Возможности для этого удивительного материала продолжают расти, поскольку отрасли промышленности ищут материалы, которые могут запоминать форму, но продолжать изменяться. 



4. Дыхание через жидкость. 

Это может походить на идею из начно-фантастического фильма, когда у людей есть способность дышать через жидкости с использованием "Perfluorocarbons". Что делает Perfluorocarbons настолько особенным? Его удивительная ёмкость или способность удерживать кислородные частицы. В то время как у нормального воздуха ёмкость в 30 раз больше чем у воды, у Perfluorocarbons она приблизительно в 20 раз больше, чем у воды. Прежде чем Вы пойдёте наполнять бассейн Perfluorocarbonsом, чтобы спокойно плавать в течение многих часов, стоит отметить, что его используют в медицине. Им заполняли скафандры, чтобы предотвратить такие проблемы, как азотный наркоз. Он также помогает спасать жизни недоношенных детей или при дыхательных проблемах. 




3. Самоочищающаяся одежда. 

Надоело стирать одежду? Учёные наконец разработали материал, способный решить эту проблему. Используя только солнечный свет, специальный хлопковый материал отталкивает не только грязь, но и ядохимикаты. Студент в Университете Дэвиса сделал это, добавив 2-антрахинон карбоновую кислоту в хлопчатобумажную ткань, связав его с целлюлозой. Это реально работает. В то время как самоочищающаяся одежда дороже, чем можно было ожидать, исследователи говорят, что другие химикаты, подобные ему, могли работать точно также, но стоят при этом дешевле. Прежде чем Вы пойдёте выбрасывать Вашу стиральную машину, стоит отметить, что Вы не сможете увидеть самоочищающуюся одежду на полках магазинов ещё долгое время. Изобретатели смотрят на более практичное применение изобретения в вооружённых силах или больницах, где чистота более жизненно необходима. 




2. Кислородная инъекция. 

Дэвид Блэйн в настоящее время держит мировой рекорд по задержке дыхания аж на 17 минут, но благодаря новой кислородной инъекции, любой сможет легко задерживать дыхание в течение 17 минут или дольше без какого-либо дискомфорта. Благодаря научному прорыву, новой кислородной частице, изобретённой Бостонской Детской больницей, люди смогут находиться до 30 минут или больше без дыхания. Делает эту частицу столь особенной то, что она окружена оболочкой, которая позволяет ввести её прямо в кровоток. После инъекции уровень кислорода в крови может быть возвращён к совершенно нормальному в течение секунд. Частицы непохожи на любые кислородные частицы, изобретённые ранее, потому что они не вызывают пузыри (эмболии) после инъекции. Применения частицы просто безграничны.




1. Плащ-невидимка. 

Учёные нашли способ замаскироваться с помощью времени. Как это происходит? Учёные нашли способ управлять скоростью света, ускоряя фронт длины её волны и замедляя конец в оптоволокне, таким образом, никто не может увидеть, что Вы делаете. Это по существу создает небольшие “отверстия” в пространстве-времени, где Вы можете сделать то, что Вы хотите абсолютно незаметно. Сама идея была математически доказана как возможная ещё в 2010 году (не считая фильма о Гарри Поттере) и была с тех пор успешно развита. В то время как сам плащ ещё не существует, учёные намереваются соткать оптоволокно как обычный материал. У него будет способность скрывать что-либо под ним ото всех вокруг Вас. Процесс происходит за 36 триллионных секунды, и учёные продолжают развивать технологию. 

Тест на интуицию и понимание электричества

Я вдруг подумал: а вот я же поставил себе на блог плагин для выполнения PHP кода, задаваемого в теле поста. Почему бы его не использовать для создания всякого рода тестов? Сначала я хотел было запрограммировать тест Данечки Шеповалова «Моральный ли ты урод?» или какой нибудь психологический тест из серии «почему со мной никто не садится рядом в переполненном автобусе, когда я сижу один на двойном сидении?». Но я почему то решил остановится на варианте теста для школьников и юных ботанов на тему электричества, электротехники и сопутствующих вещей. В тесте всего 7 вопросов: некоторые простые, а некоторые из них требуют вдумчивого применения ветхозаветного школьного закона Ома. Итак…

О научной продуктивности Украины

На самом деле, основной продукт, который производят ученые — это новые знания о мире. Быстрые процессоры, материалы с уникальными свойствами и тому подобные приспособления улучшающие жизнь являются лишь побочным продуктом новых знаний. Практически единственной мерой того, сколько же новых знаний произвели ученые (за что им платить деньги налогоплательщиков?) является число научных публикаций в рецензируемых международных журналах. Конечно, критерий далек от идеальности, но лучшего сейчас нет.

В интернете часто можно встретить мнение о том, что украинская наука переживает кризис и нужно срочно что-то делать. Давайте разберемся с этим, учитывая приведенный выше критерий. Французские ученые публикуют в разы больше статей в год чем их украинские коллеги, и это факт. Но означает ли это, что украинские ученые в разы менее продуктивнее французских?

http://rotozeev.net/page/o-nauchnoj-produktivnosti-ukrainy

Математический метод.

О пользе математики )))


Трое математиков и трое физиков собираются ехать на поезде в другой город на конференцию. Они встречаются перед кассой на вокзале. Первой подходит очередь физиков и они, как все нормальные люди покупают по билету на человека. Математики же покупают один билет на всех. «Как же так?» — удивляются физики — «Ведь в поезде контроллер, вас же без билетов оттуда выгонят!». «Не волнуйтесь» — отвечают математики — «У нас есть МЕТОД».
Перед отправкой поезда физики рассаживаются по вагонам, но стараются проследить за применением загадочного «метода». Математики же все набиваются в один туалет. Когда контроллер подходит к туалету и стучит, дверь приотворяется, оттуда высовывается рука с билетом. Контроллер забирает билет и дальше все они без проблем едут в пункт назначения.

После конференции те же вновь встречаются на вокзале. Физики, воодушевившись примером математиков, покупают один билет. Математики не берут ни одного. — А что же вы покажете контроллеру? — У нас есть МЕТОД.
В поезде физики набиваются в один туалет, математики — в другой. Незадолго до отправления, один из математиков подходит к туалету, где прячутся физики. Стучит. Высовывается рука с билетом. Математик забирает билет и возвращается к коллегам.

МОРАЛЬ: Нельзя использовать математические методы, не понимая их!